LogoLogo
  • TABLE OF CONTENTS
  • General Concepts
    • Overview
    • Introduction to Rendered.ai
    • The Rendered.ai Platform
    • Who Uses Rendered.ai?
    • Rendered.ai Licensing and Offerings
  • Application User Guides
    • Overview
    • Quick Start Guide
      • Terminology
      • Content Codes
      • Getting Started with the SDK
    • Tutorials
      • Organization and Workspace Resources
      • Creating and Using Graphs
        • Graph Validation
        • Graph Best Practices
      • Creating and Using Datasets
        • Dataset Annotations
        • Dataset Analytics
        • Domain Adaptation
        • Dataset Comparison
        • Training and Inference
        • Mixing Datasets
        • Dataset Best Practices
      • Creating and Using Volumes
        • Inpaint Service
      • Collaboration
  • Development Guides
    • Overview
    • Ana Software Architecture
      • Basic components
      • Graphs
      • Channels
      • Packages
      • Package Volumes
      • Nodes
      • Schema
      • Ana Modules, Classes, and Functions
      • The anatools Package
      • Graph Validation
        • Typical Validation Use Cases
      • Preview
      • In-tool Help
    • Setting Up the Development Environment
      • Local Development With NVIDIA GPUs
      • Remote Development With AWS EC2
    • Deploying a Channel
    • An Example Channel - Toybox
      • Run and Deploy the Toybox Channel
      • Add a Modifier Node
      • Add a Generator Node
  • Open Source Channels
    • Toybox
    • DIRSIG Channel
  • Release Notes
    • Rendered.ai Platform
      • Platform Version 1.6.0
      • Platform Version 1.5.0
      • Platform Version 1.4.1
      • Platform Version 1.4.0
      • Platform Version 1.3.2
      • Platform Version 1.3.1
      • Platform Version 1.3.0
      • Platform Version 1.2.6
      • Platform Version 1.2.5
      • Platform Version 1.2.4
      • Platform Version 1.2.3
      • Platform Version 1.2.2
      • Platform Version 1.2.1
      • Platform Version 1.2.0
      • Platform Version 1.1.5
      • Platform Version 1.1.4
      • Platform Version 1.1.3
      • Platform Version 1.1.2
      • Platform Version 1.1.1
      • Platform Version 1.1.0
      • Platform Version 1.0.3
      • Platform Version 1.0.2
      • Platform Version 1.0.1
      • Platform Version 1.0.0
      • Platform Version 0.3.4.4
      • Platform Version 0.3.4.3
      • Platform Version 0.3.4.2
      • Platform Version 0.3.4.1
      • Platform Version 0.3.4
      • Platform Version 0.3.3.1
      • Platform Version 0.3.3
      • Platform Version 0.3.2.2
      • Platform Version 0.3.2.1
      • Platform Version 0.3.2
      • Platform Version 0.3.1.6
      • Platform Version 0.3.1.5
      • Platform Version 0.3.1.4
      • Platform Version 0.3.1.3
      • Platform Version 0.3.1.2
      • Platform Version 0.3.1
      • Platform Version 0.3.0.9
      • Platform Version 0.3.0.8
      • Platform Version 0.3.0.7
      • Platform Version 0.3.0.6
      • Platform Version 0.3.0.5
      • Platform Version 0.3.0
      • Platform Version 0.2.15
      • Platform Version 0.2.14
      • Platform Version 0.2.13
      • Platform Version 0.2.12
      • Platform Version 0.2.11
      • Platform Version 0.2.10
      • Platform Version 0.2.9
      • Platform Version 0.2.8
      • Platform Version 0.2.7
      • Platform Version 0.2.6
      • Platform Version 0.2.5
      • Platform Version 0.2.4
      • Platform Version 0.2.3
      • Platform Version 0.2.2
      • Platform Version 0.2.1
      • Platform Version 0.2.0
Powered by GitBook
On this page
  • Dataset Selection
  • Mix Dataset Settings
  • Mix Results
Export as PDF
  1. Application User Guides
  2. Tutorials
  3. Creating and Using Datasets

Mixing Datasets

PreviousTraining and InferenceNextDataset Best Practices

Last updated 24 days ago

Rendered.ai offers a Dataset Mixing service that allows users to combine images from one or more datasets by sampling a specified number of images from each dataset. This can be used to simply create larger datasets, combine synthetic and real datasets for experimentation, or filter classes out of datasets. In this tutorial, we'll show you how to mix two datasets together.

Dataset Selection

Navigate to the Datasets Library tab of a Workspace. Select the Datasets you want to mix together by clicking the checkbox on the Dataset's row.

Next, click the Mix icon in the Action Bar on the left.

Mix Dataset Settings

In the Mix Dataset modal, we have the ability to give our dataset a name and description, set tags for the dataset, and set a seed for the job. Each Dataset being mixed will have additional parameters that can be selected:

  • Maximum Sample Count - this sets the maximum number of samples that will be taken from the dataset based on the filters applied. By default it will sample from all images in the dataset.

  • Included Classes - this will only select images that have one or more of the classes selected when sampling from the dataset. By default this is left blank, meaning it will sample from all images in the dataset.

When the job parameters are configured, click the Mix button to start the mixing job.

Mix Results

Once the job is complete, we can see the new dataset that includes classes for submarine and the sailboat classes we specified from the Sailboats HDR dataset.

Notice that the total image count for the new dataset is 393 images. This is because we set a Maximum Sample Count of 10 images for the Submarine HDR dataset without any filter applied, giving us 10 images, and a Maximum Sample Count of 1000 images from the Sailboat HDR dataset with an included class filter applied, yielding us only 383 images.

Datasets Library
Mix Datset Settings
Mixed Dataset